Basic Economics of Land-Based Water Recirculating Aquaculture Systems

Brian Vinci, Steven Summerfelt

The Conservation Fund Freshwater Institute USA

Trond W. Rosten, Kristian Henriksen, Erik Skontorp Hognes

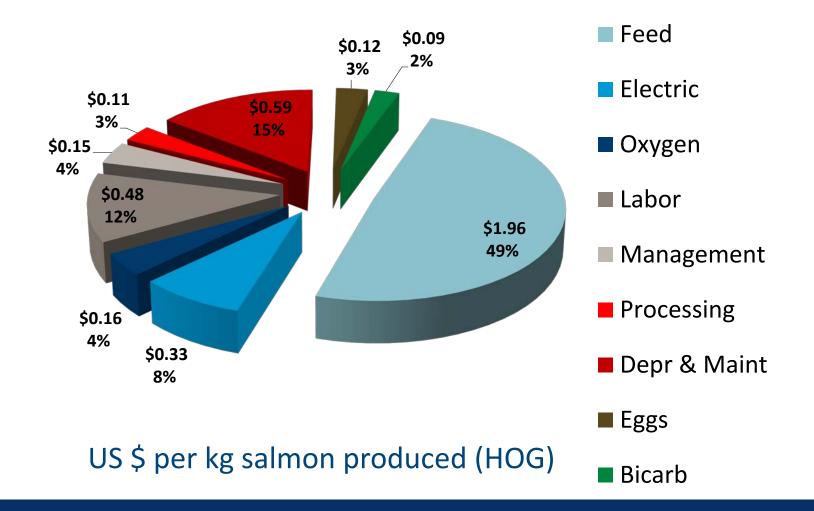
SINTEF Fisheries and Aquaculture Norway

Outline

Basic Economic Elements of Land-Based RAS

- Capital Expense (CAPEX)
- Operating Expense (OPEX)
- Working Capital

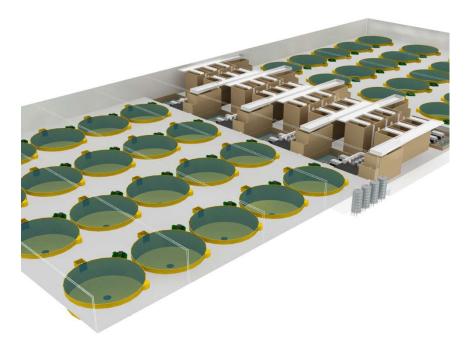
• Comparison of Land-Based RAS and Net-Pen Salmon Production Models


- Capital Expense
- Biological Production Model
- Production Cost
- Cash Flow
- Net Present Value

Capital Expenses for Land-Based RAS (CAPEX)

- Land
- Rearing Tanks
- Buildings
- RAS Equipment Package
- Water Supply System
- Feeding System
- Backup Generator System
- Monitoring and Control System
- Effluent Treatment/Solids Management
- Processing Facility

Operating Expenses for Land-Based RAS (OPEX)

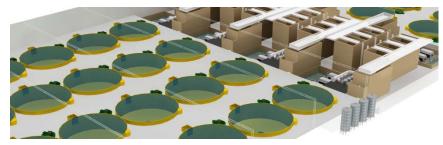


Working Capital Requirement

- The business requires enough upfront cash reserve to cover the expenses throughout the initial production cycle until the first harvest generates sales revenue
 - Atlantic Salmon 24 months
 - Rainbow Trout/Steelhead 12 months
 - Tilapia 6 months

Economic Comparison of Two Production Models

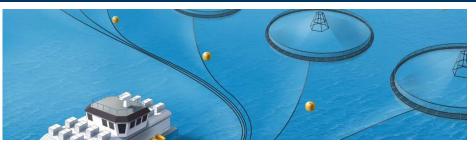
Land-based RAS farm


Producing 3,300 M.tons HOG Atlantic Salmon

Model Net Pen farm

Producing 3,300 M.tons HOG Atlantic Salmon

Capital Expense


Model Land-based RAS farm (32 million US \$) One production site

Invested equipment:

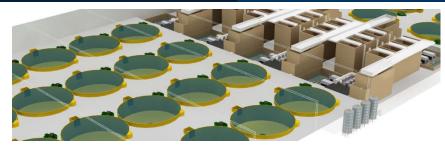
- 40,000 m³ of rearing tank volume
- 25,500 m² of building area
- 2,500 m² processing facility
- 885 m³/min of pumped RAS flow
 - Pumps and Piping
 - Screen filters
 - Biofilters
 - Gas Conditioning Filters
- 1.08 1.26 kg feed per m³ supply water
- Feeding Systems
- Backup Generators

Investments in total: 32 M US \$ - approximately 192 MNOK

Maintenance and reinvestments set equal to the depreciations

Model Net Pen farm (12.3 million US \$):

<u>Two</u> production sites, each with six net pen cages.


- ≈587,000 m³ net-volume
- 120,000 m² area footprint visible at sea
 - ≈179,000 m² area footprint incl. no thoroughfare zone
 - ≈463,000 m² area footprint incl. no fishing zone

Invested equipment:

- 3 licences
- 12 Floating rings (157m Ø)
- 24 nets (25 m deep)
- 2 mooring systems
- 2 boats
- 2 feed barges (150 Mtons)
- 12 camera systems
- 12 feed distributors
- 12 power systems

Investments in total: 72.9 MNOK – approximately 12.3 M US \$ Maintenance and reinvestments set equal to the depreciations

Biological Production

Model Land-based RAS farm

- One production site for all life-stages
- Four cohorts per year
- Growth based on thermal growth coefficients from Freshwater Institute growout trials, adjusted down by 10%:
 - 1.1 for Fry
 - 1.25 for Smolt
 - 1.8 for Pre-growout
 - 2.2 for Growout
- Mortality per generation 16%
- Feed conversion ratios:
 - 0.75 for Fry
 - 0.90 for Smolt
 - 1.0 for Pre-Growout
 - 1.1 for Growout
- Overall Feed to Whole Fish Produced (kg/kg): 1.09

Model Net Pen farm:

- 2 production sites & 3 licences of 780 M.tons of maximum total biomass at sea.
- Two transfers of smolts to sea annually, to one site
 - S1 at 1st of April, 100 grams, 520' smolts in three cages
 - S0 at 1st of August, 75 grams, 520' smolts in three cages
- Growth based on the Skretting table, Specific Growth Rate (SGR), adjusted down by 12 %.
- Mortality per generation approximately 16.1 % (average in Mid-Norway in 2011) (Norwegian Food Safety Authority 2011).
- Economic feed conversion ratio: 1.27 (average in Norway over the last ten years) (Directorate of Fisheries 2013).

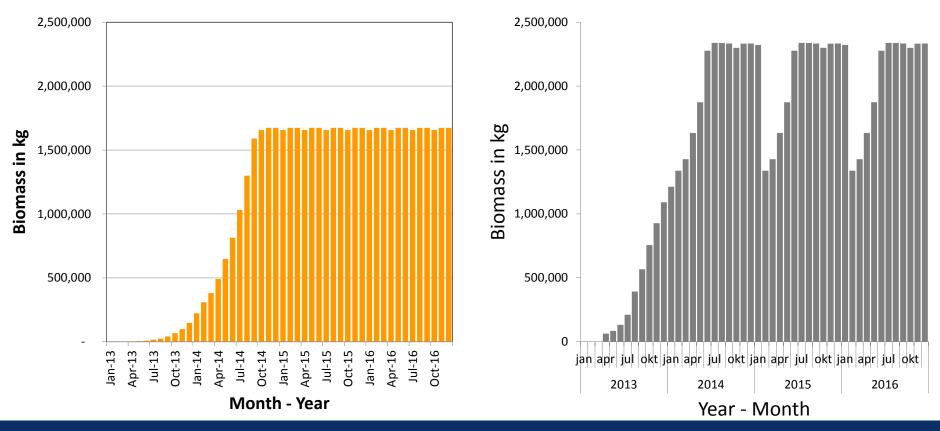
Biological Production

Model Land-based RAS farm

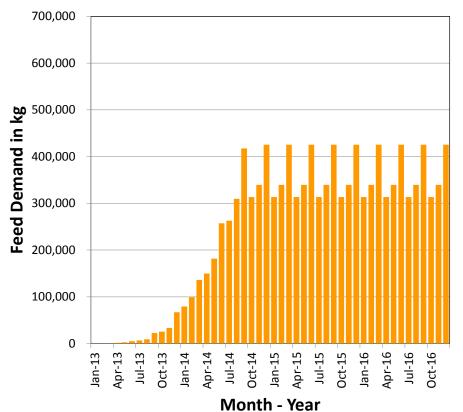

- Rearing Density
 - 80 kg/m³ maximum
- Harvesting:
 - Time from first feeding to first harvest: 21 months
 - Harvest every week of the year
 - Each cohort harvested over 13 weeks
 - One grisle harvest at ~1.2 kg for 50% of males
 - Harvest in total: 3,947 M.tons LWE; 3,300 M.tons HOG (5 % purge loss / 12 % HOG loss)
 - Initial harvest weight (whole fish): 4.5 kg
 - Average harvest weight (whole fish): 5.1 kg
- No downtime in the bioplan

Model Net Pen farm:

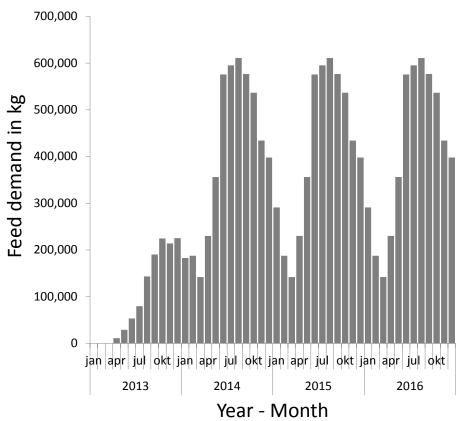
- Rearing Density
 - 25 kg/m³ maximum
- Harvesting:
 - Time from first feeding to first harvest: 24-31 months
 - Time at sea before first harvest: 16 months
 - Harvest 8 months of the year
 - Harvest S1 from July to October
 - Harvest S0 from November to February
 - Harvest in total: 3,975 M.tons LWE; 3,299 M.tons HOG (5 % purge loss /12 % HOG loss)
 - Average harvest weight (whole fish) : 4.5 kg
- Two months of fallowing between production cycles


Biomass

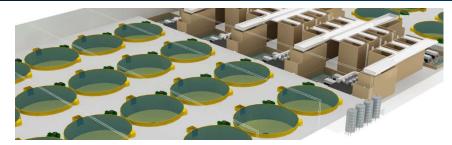
Model Land-based RAS farm


Model Net Pen farm

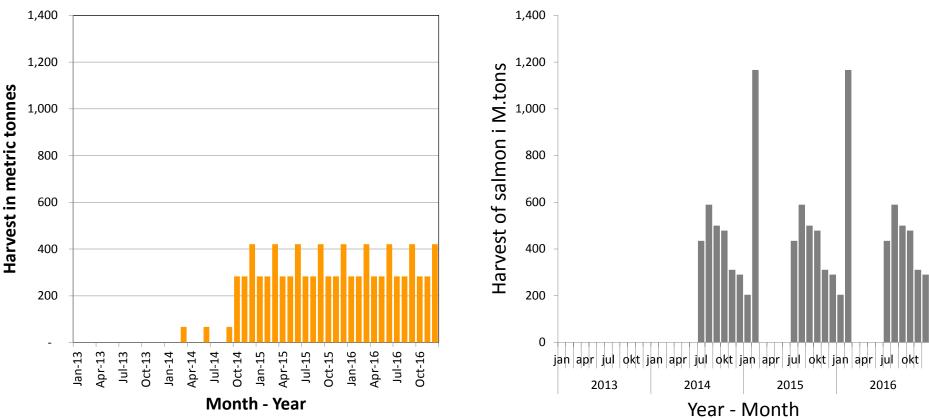
Feeding



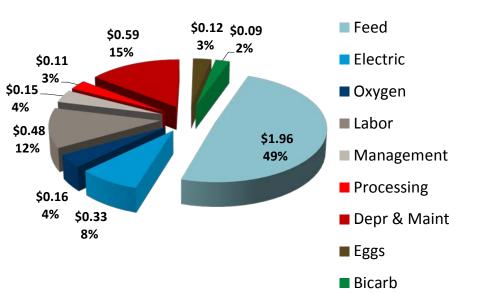
Model Land-based RAS farm

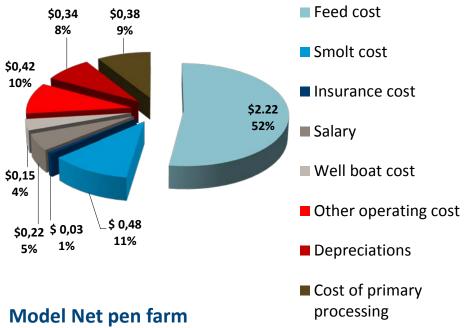


Model Net Pen farm


Harvest

Model Land-based RAS farm


Model Net Pen farm



THE -Production Cost (at steady state), USD/HOG Conservation Fund

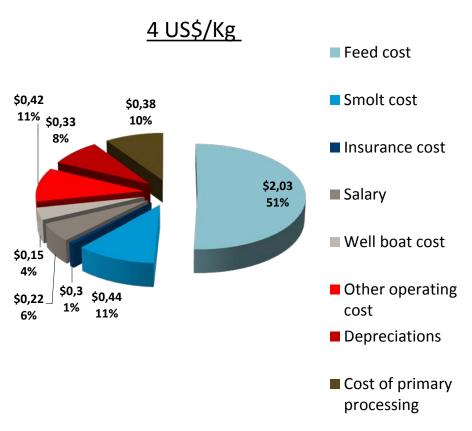
3.98 USD

Model Land-based RAS farm

Total estimated production cost per kilo HOG: 3.98 US \$

> Uses 0.05 US \$ / kWh; Comparative Norway is 0.17 US \$ / kWh

4,24 USD

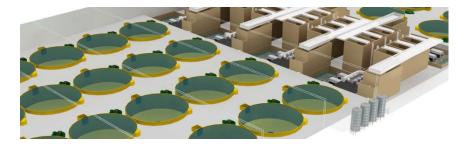

Total estimated production cost per kilo HOG: 4.24 US \$

Comments: EFCR, mortality & utilization: Model Net Pen Farm

- Not a optimal utilization of three licences!
 - It's possible to harvest as much as 1,600 1,700 M.tons per licence (~2 x Model)
 - Requires a more large-scale operation
- Average EFCR used in the calculation is high: 1.27
 - It's possible to achieve an EFCR more closely to 1.00
 - Top 25 % EFCR in Norway over the last ten years is 1.14
 - Top 10 % EFCR in Norway over the last ten years is 1.04
- Average mortality at 16.1 % is high
 - Some sites in Norway are now achieving only 2 4 % mortality
 - Then on the other side, some sites have mortality at over 30 % mostly due to disease.

Use of "best-practice" inputs

- EFCR: 1.14
- Mortality: 8 % per generation
- Gives a production cost of <u>4 US \$/kg HOG</u> (Compared to 4.24 US \$/kg)
 - Reduction in feed cost
 - Reduction in smolt cost
- Model Net Pen Yield per smolt: <u>3.44 kg</u>
 - Model Net Pen Base Case: <u>3.17 kg</u>
- Model RAS Yield Per Smolt: <u>3.97 kg HOG</u>



Market and Price

- Initial test marketing in the Vancouver area and in the Washington DC area indicated that product sold at premium pricing (30% or more).
 - Basis of premium was different in different markets sustainable (BC) and local (DC)
- Land-based RAS produced salmon is a premium product that is being sold into an incremental market that currently doesn't buy net pen salmon (Kuterra data).
- Most major retailers have sustainable seafood purchasing policies that land-based RAS produced salmon will be able to meet.

CONSERVATION FUND Quick Estimation of Profitability – Base Case

Model Land-based RAS farm – w/o Premium Price:

Investments:

Investments in total: 32 M US \$

Income:

- Price per kilo 34 NOK or 5.66 US \$
- Total estimated income: <u>18.68 M US \$</u>

Model Net Pen farm – Conservative Performance:

Investments:

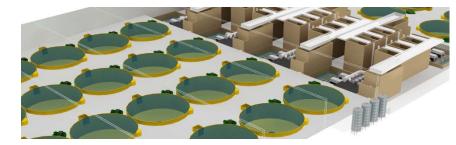
Investments in total: 12.3 M US \$

Income:

- Fish Pool forward prices
 - 2014: 35.85 NOK/kilo
 - 2015: 33.88 NOK/kilo (Jan Aug)
- Estimated price pr kilo: 34 NOK ≈ 5,66 US \$
- Total estimated income: 18.67 M US \$

Costs:

- Production cost excluding financial cost: 4.24 US \$ / kg
- Total production costs (ex. finance): ≈<u>13.99 M US \$</u>


Earnings before Interest and Taxes (EBIT): 4.68 M US \$

Costs:

- Production cost excluding financial cost: 3.98 US \$ / kg
- Total production costs (<u>ex. finance</u>): ≈ <u>13.13 M US \$</u>

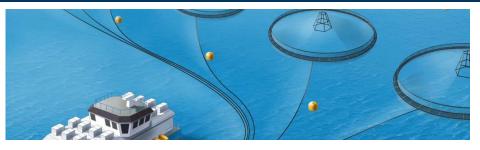
Earnings before Interest and Taxes (EBIT): 5.55 M US \$

CONSERVATION FUND Quick Estimation of Profitability – Best Case

Model Land-based RAS farm – Premium Price: Investments:

Investments in total: 32 M US \$

Income:


- Possibility for a 30% price premium
 - Price per kilo (5.66 * 1.3) ≈ 7.36 US \$

Total estimated income: <u>24.29 M US \$</u>

Costs:

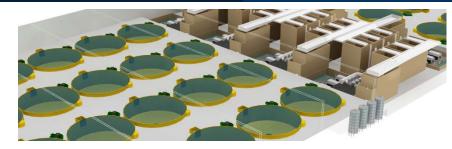
- Production cost excluding financial cost: 3.98 US \$/kg
- Total production costs (<u>ex. finance</u>): ≈ <u>13.13 M US \$</u>

Earnings before Interest and Taxes (EBIT): 11.16 M US \$

Model Net Pen farm – High Performance: Investments:

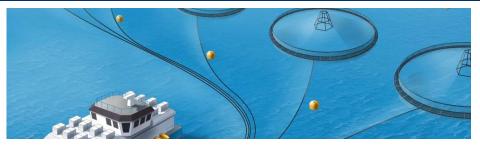
• Investments in total: 12.3 M US \$

Income:


- Fish Pool forward prices
 - 2014: 35.85 NOK/kilo
 - 2015: 33.88 NOK/kilo (Jan Aug)
- Estimated price per kilo: 34 NOK ≈ 5.66 US \$
- Total estimated income: <u>18.67 M US \$</u>

Costs:

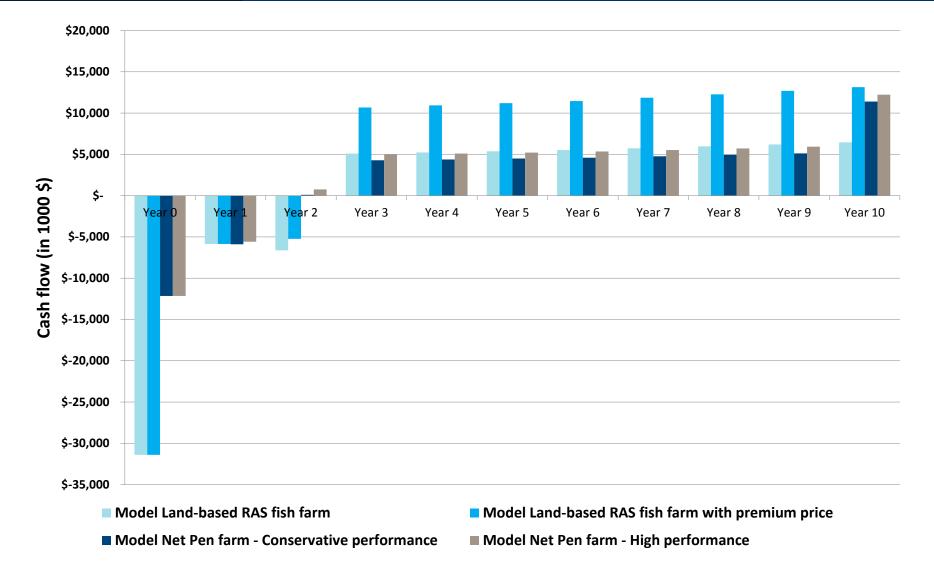
- Production cost excluding financial cost: 4.00 US \$/kg
- Total production costs (<u>ex. finance</u>): ≈ <u>13.20 M US \$</u>


Earnings before Interest and Taxes (EBIT): 5.47 M US \$

Cash Flow Assumptions

Model Land-based RAS farm

- Salary: ≈ 1,575,000 US \$ / year
- Electricity: ≈ 21.5 mWh
 - Cost per kWh: 0.05 US \$
- Oxygen: ≈ 3,000 M.tons
 - Cost per kilo: 0.2 US \$
- Bicarb: ≈ 862 M.tons.
 - Cost per kilo: 0.35 US \$
- Feed: 1.50 US \$ per kilo
- Eggs: ≈ 1.2 million
 - Cost: 0.30 US \$ each
- Management: 500,000 US \$ / year
- Primary processing:
 - Salary: 375,000 US \$ / year
 - 10 persons
 - Other cost included in the total calculation
- Price per kilo HOG: 5.45 8.77 US \$


Model Net Pen farm

- Salary: ≈ 750,000 US \$ / year
- Primary processing ≈ 0.38 US \$ / kilo HOG
- Well boat 0.92 US \$ / kilo HOG (includes smolt and slaughter transport)
- Insurance premium ≈ 0.8 % of the value of the biomass
- Feed: 1.48 US \$ per kilo
- Smolts: Conservative performance 1030'/year High performance: 960'/year Cost: ≈ 1.53 US \$ each
- Other production cost (Ex. Electricity, de-liceing etc.) ≈ 0.43 US \$ / kilo HOG
- Price per kilo HOG: 5.45 6.75 US \$
- Licences not depreciated and is sold after 10 years

Both:

2 % inflation first 6 years; 3 % inflation four last years Value of equipment/buildings etc. set to 0 after ten years

Ten Year Cash Flow

Net Present Value Analysis

• Rate of return calculated to 8.91 %. (6 % loan interest, 28 % tax, 27.23 % required return on equity before tax, 30/70 private equity/loan)

Risk free return	3.23 %
Commercial risk	10 %
Financial risk	10 %
Liquidity premium	4 %
Required rate of return before tax	27.23 %
Tax (28%)	7.63 %
Estimated required rate of return on equity	19.61 %
Estimated required rate of return on total capital	8.91 %

Net present value at 8.91 % required rate of return

Model Land-based RAS farm:

- NPV: -16 M US \$
- NPV & NO Required Rate of Return: 1,810,000 US \$

Model Land-based RAS farm with premium price

- NPV: 13.33 M US \$
- NPV at 0, at a required rate of return of: ≈ 14.35 %

Model Net Pen farm - Conservative performance

- NPV: 7 M US \$
- NPV at 0, at a required rate of return of: ≈ 15.07 %

Model Net Pen farm - High performance

- NPV: 11.39 M US \$
- NPV at 0, at a required rate of return of: ≈ 18.67 %

NPV is for 10 years

Net present value at 8.91 % required rate of return

Model Land-based RAS farm:

- NPV: -16 M US \$
- NPV & NO Required Rate of Return: 1,810,000 US \$

Model Land-based RAS farm - Premium Price

- NPV: 13.33 M US \$
- NPV at 0, at a required rate of return of: ≈ 14.35 %

Model Net Pen farm - Conservative Performance

- NPV: 7 M US \$
- NPV at 0, at a required rate of return of: ≈ 15.07 %

Model Net Pen farm - High performance

- NPV: 11.39 M US \$
- NPV at 0, at a required rate of return of: ≈ 18.67 %

NPV is for 10 years

Brief Conclusions

- Production: Model Land-based RAS farm has a more consistent production than the Model Net Pen farm
- CAPEX: Model Land-based RAS farm capital cost is greater per unit of annual production than Model Net Pen capital cost per unit of annual production
- OPEX: Model Land-based RAS farm operating cost is slightly lower than Model Net Pen farm operating cost (within this analysis)
- NPV: Model Land-based RAS farm and Model Net Pen farm have similar net present value for the expected case